Ba đường Conic – Đặng Thành Nam

Chuyên đề 11: Ba đường Conic 678 Dang Thanh Nam Auditing 51a, National economics University, Ha Noi, Viet Nam Dang Thanh Nam Auditing 51a, National economics University, Ha Noi, Viet Nam Email : dangnamneu@gmail.com Yahoo: changtraipkt Mobile: 0976266202 CHUYÊN ĐỀ 11: BA ĐƯỜNG CONIC Chuyên đề 11: Ba đường Conic 679 Dang Thanh Nam Auditing 51a, National economics University, Ha Noi, Viet Nam BA ĐƯỜNG CÔNIC 680 Dang Thanh Nam Auditing 51a, National economics University, Ha Noi, Viet Nam Dang Thanh Nam Auditing 51a, National economics University, Ha Noi, Viet Nam Email : dangnamneu@gmail.com Yahoo: changtraipkt Mobile: 0976266202 Đề thi các năm chủ yếu đề cập đến Elip; hyperbol và parabol rất ít ra A. KIẾN THỨC CẦN NHỚ Elip có dạng chính tắc 2 2 2 2 ( ) : 1 ( , 0) x y E a b a b . + Độ dài trục lớn 2a; độ dài trục nhỏ 2b 2 2 2 ( ) a b c . + Tiêu cự 2c. + Tọa độ các tiêu điểm 1 2 ( ;0); ( ;0). F c F c + Tọa độ các đỉnh 1 2 1 2 ( ;0); ( ;0); (0; ); (0; ). A a A a B b B b Hình chữ nhật cơ sở 1 1 2 2 A B A B có cạnh 2a và cạnh 2b. + Tâm sai c e a + Đường chuẩn 2 a x c  + Với điểm 1 2 ( ; ) ( ) ; c c M x y E MF a x MF a x a a B. BÀI TẬP MẪU Bài 1. Trong mặt phẳng tọa độ Oxy cho elip 2 2 ( ) : 1 4 1 x y E . Tìm tọa độ các điểm A và B thuộc ( ) E , có hoành độ dương sao cho tam giác OAB cân tại O và có diện tích lớn nhất. Lời giải: + Giả sử ( ; ); ( ; ) A A B B A x y B x y Từ giả thiết ta có ; A B B A x x y y Do đó + 1 1 . ( ; ) 2 . . 2 2 ABC A A A A S AB d O AB y x y x + Áp dụng bất đẳng thức Cauchy cho 2 số dương và A thuộc ( ) E ta có: 2 2 2 2 2 . 1 1 4 1 4 1 A A A A ABC A A ABC x y x y S y x S   BA ĐƯỜNG CÔNIC 681 Dang Thanh Nam Auditing 51a, National economics University, Ha Noi, Viet Nam + Dấu bằng xảy ra khi và chỉ khi 1 1 1 2; ( 2; ), ( 2; ) 2 2 2 A A x y A B  hoặc 1 1 ( 2; ), ( 2; ) 2 2 A B . Vậy các điểm cần tìm là 1 1 1 1 ( 2; ), ( 2; ); ( 2; ), ( 2; ). 2 2 2 2 A B A B Bài 2. Trong mặt phẳng tọa độ Oxy cho elip 2 2 ( ) : 1 9 4 x y E và các điểm ( 3;0); A ( 1;0) I Tìm tọa độ các điểm B,C thuộc( ) E sao cho I là tâm đường tròn ngoại tiếp tam giác ABC. Lời giải: + Ta có 2 IA Đường tròn ngoại tiếp tam giác ABC có phương trình: 2 2 ( ) : ( 1) 4 , C x y B C là giao điểm của ( ) & ( ) C E + Tọa độ các điểm B,C là nghiệm của hệ phương trình 2 2 2 2 ( 1) 4 1 9 4 x y x y  2 2 2 2 2 ( 1) 4 ( 1) 4 3 3; 5 18 9 0 5 x y x y x x x x   Với 3 0 x y B hoặc C trùng A(loại). Với 3 4 6 3 4 6 3 4 6 ( ; ), ( ; ) 5 5 5 5 5 5 x y B C    Bài 3. Trong mặt phẳng tọa độ với hệ đề các vuông góc Oxy , hãy viết phương trình chính tắc của elip ( ) E biết rằng ( ) E có tâm sai bằng 5 3 và hình chữ nhật cơ sở của ( ) E có chu vi bằng 20. Lời giải: + Giả sử elip 2 2 2 2 ( ) : 1 ( , 0) x y E a b a b , theo giả thiết ta có: + Tâm sai 2 2 5 (1) 3 c a b e a a . + Chu vi hình chữ nhật cơ sở 4( ) 20 (2) a b . 2 2 3 (1) & (2) ( ) : 1 2 9 4 a x y E b  Bài 4. Lập phương trình chính tắc của elip ( ) E có tâm O, tiêu điểm trên trục hoành và qua điểm ( 3;1) M , biết rằng khoảng cách giữa 2 đường chuẩn bằng 6. Lời giải: BA ĐƯỜNG CÔNIC 682 Dang Thanh Nam Auditing 51a, National economics University, Ha Noi, Viet Nam + Giả sử elip 2 2 2 2 ( ) : 1 ( , 0) x y E a b a b Điểm 2 2 3 1 ( 3;1) ( ) 1 (1) M E a b + Khoảng cách giữa 2 đường chuẩn là 2 2 2 2 2 2 ( ) 2 6 3 (2) a a a a c c c a b Từ (1) và (2) 2 2 6 2 a b  Vậy elip cần tìm 2 2 ( ) : 1 6 2 x y E Bài 5. Trong mặt phẳng tọa độ với hệ đề các vuông góc Oxy , cho điểm (2;0) C và elip 2 2 ( ) : 1 4 1 x y E . Tìm tọa độ các điểm , A B thuộc ( ) E , biết rằng , A B đối xứng với nhau qua trục hoành và ABC là tam giác đều. Lời giải: + Giả sử 2 2 0 0 0 0 0 0 ( ; ), ( ; ) ( ) 1(1) 4 1 x y A x y B x y E Do C là một đỉnh của ( ) E nằm trên trục hoành, nên tam giác ABC cân tại C Tam giác ABC đều khi và chỉ khi 0 0 3 3 ( ; ) 2 (2) 2 2 d C AB AB x y Từ (1) và (2) 0 0 2 7 4 3 7 x y   Vậy 2 4 3 2 4 3 ( ; ), ( ; ) 7 7 7 7 A B hoặc 2 4 3 2 4 3 ( ; ), ( ; ) 7 7 7 7 A B Bài 6. Cho elip 2 2 ( ) : 1 25 16 x y E và điểm (2;1) M . Gọi d là đường thẳng qua M, cắt ( ) E tại hai điểm A, B sao cho M là trung điểm của AB. Hãy viết phương trình đường thẳng d. Lời giải: + Xét đường thẳng qua M, có hệ số góc k. Phương trình của d là: ( 2) 1 y k x Khi đó tọa độ A, B là nghiệm của hệ 2 2 2 2 ( 2) 1 ( 2) 1 ( ( 2) 1) 1 1(1) 25 16 25 16 y k x y k x x y x k x   + ; A B x x là nghiệm của (1). Ta có BA ĐƯỜNG CÔNIC 683 Dang Thanh Nam Auditing 51a, National economics University, Ha Noi, Viet Nam 2 2 2 2 (1) (16 25 ) (100 50 ) 100 100 375 0 k x k k x k k Vì M là trung điểm của AB nên 2 A B M x x x . Theo định lí Vi – ét ta có 2 2 100 50 32 4 16 25 25 k k k k . Vậy phương trình của d là 32 ( 2) 1 25 y x hay 32 25 64 0 x y Bài 7. Cho elip 2 2 ( ) : 1 25 25 4 x y E và đường thẳng : 3 4 30 0 x y  . Tìm điểm M thuộc ( ) E sao cho khoảng cách từ M đến  lớn nhất, nhỏ nhất. Lời giải: + Giả sử 2 2 0 0 0 0 ( ; ) ( ) 1 (1) 25 25 4 x y M x y E . Khoảng cách từ M đến  là 0 0 2 2 3 4 30 ( ; ) 3 4 x y d M  2 2 2 2 2 2 2 0 0 0 0 0 0 1 1 (1) 25 4 (3 2 )( 4 ) (3 4 ) 13 13 x y x y x y 2 0 0 0 0 (3 4 ) 25.13 5 13 3 4 5 13 x y x y    0 0 5 13 30 3 4 30 5 13 30 x y   0 0 3 4 30 6 13 ( ; ) 6 13 5 x y d M    Bài 8. Cho elip 2 2 1 2 ( ) : 1, ( 3;0); (3;0) 25 16 x y E F F là các tiêu điểm của ( ) E . Xác định tọa độ điểm ( ) M E , biết rằng 1 2 2MF MF . Lời giải: + Gọi 2 2 0 0 0 0 ( ; ) ( ) 1(1) 25 16 x y M x y E Elip ( ) E có tâm sai 3 5 c e a , ta có 1 0 2 0 ; MF a ex MF a ex 2 1 0 0 2 2( ) MF MF a ex a ex 0 0 5 25 4 56 25 4 56 ( ; ) 3 3 9 9 9 9 3. 5 a x y M e  hoặc 25 4 56 ( ; ) 9 9 M Bài 9. Lập phương trình hypebol ( ) H có tiêu cự trên Ox , tâm O độ dài tiêu cự là 10 và một đường tiệm cận có phương trình :3 4 0 d x y . Lời giải: BA ĐƯỜNG CÔNIC 684 Dang Thanh Nam Auditing 51a, National economics University, Ha Noi, Viet Nam + Giả sử hypebol 2 2 2 2 ( ) : 1( , 0) x y H a b a b Độ dài tiêu cự 2 2 2 2 2 2 10 25 (1) c a b a b + Đường chuẩn b y x a  . Từ 3 3 3 4 0 (2) 4 4 b x y y x a 2 2 (1) & (2) 16; 9 a b Vậy 2 2 ( ) : 1 16 9 x y H Bài 10. Cho hypebol 2 2 ( ) : 1 1 8 x y H và đường thẳng ( ) : 2 0 d x y m . Đường thẳng ( ) d cắt ( ) H tại 2 điểm phân biệt , ( ) A B A B x x , biết rằng 2 1 2 BF AF , trong đó 1 2 ( 3;0), (3;0) F F là các tiêu điểm của ( ) H .Viết phương trình đường thẳng ( ) d . Lời giải: Tạo độ của , A B là nghiệm của hệ 2 2 2 2 (2 ) 1 1 (1) 1 8 1 8 2 0 2 0 x y x x m x y m x y m   Ta có 2 2 (1) 4 4 8 0 x mx m , phương trình này luôn có 2 nghiệm phân biệt do 2 8 0 4 m . Do vậy ( ) H luôn cắt ( ) d tại 2 điểm phân biệt. 2 1 2 2 (2) B A c c BF AF a x a x a a , do , A B thuộc 2 nhánh khác nhau của ( )( ) A B H x x , nên ; ; 1 A B c x a x a a . Và từ(2) suy ra 2( ) 6 3 1 0(3) B A A B c c x a a x x x a a Do , A B x x là nghiệm của (1), nên theo định lí Vi – ét ta có 2 (4) 8 4 A B A B x x m m x x  6 16 2 (3),(4) 21 m  Bài 11. Cho 2 elip 2 2 2 2 1 2 ( ) : 1;( ) : 1 16 9 4 x x y E y E . Viết phương trình đường tròn đi qua các giao điểm của 1 2 ( ),( ) E E . Lời giải: Tọa độ các giao điểm là nghiệm của hệ BA ĐƯỜNG CÔNIC 685 Dang Thanh Nam Auditing 51a, National economics University, Ha Noi, Viet Nam 2 2 2 2 2 2 2 2 2 2 2 2 432 1 ` 16 16(1) 92 16 55 28 11 4 9 36(2) 1 55 9 4 x y x x y x y x y x y y    Do vậy 1 ( ) E cắt 2 ( ) E tại 4 điểm phân biệt, thỏa mãn 2 2 92 11 x y . Vậy phương trình đường tròn đi qua các giao điểm của 1 2 ( ) & ( ) E E là 2 2 92 ( ) : 11 C x y Bài 12. Trong mặt phẳng tọa độ vuông góc Oxy cho parabol 2 ( ) : 16 P y x và điểm (1;4) A . Hai điểm phân biệt B, C ( , B C khác A) di động trên ( ) P sao cho góc 0 90 BAC  . Chứng minh rằng đường thẳng BC đi qua một điểm cố định. Lời giải: + Giả sử 2 2 1 1 ( ; ), ( ; ) ( ),( , 4, ). 16 16 B b b C c c P b c b c   Ta có 2 2 1 1 ( 1; 4), ( 1; 4) 16 16 AB b b AC c c         0 2 2 2 1 1 90 . 0 ( 1)( 1) ( 4)( 4) 0 16 16 ( 4)( 4)(( 4)( 4) 16 ) 0 ( 4)( 4) 256 4( ) 272 272 4( )(1) BAC AB AC b c b c b c b c b c b c bc bc b c           2 2 1 ( ; ) ( ) ; ( ;16) 16 16 c b BC c b c b u u b c       Vậy phương trình đường thẳng BC là 2 1 16( ) ( )( ) 0 16 x b b c y b , hay 16 ( ) x b c y bc , thay bc ở (1) vào ta được phương trình của BC là :16 272 ( )( 4) 0 BC x b c y , , ; (17; 4) b c M BC dpcm Bài 13. Cho parabol 2 ( ) : 4 P y x và 2 điểm (0; 4), ( 6;4) A B . - Tìm trên ( ) P điểm C sao cho tam giác ABC vuông tại A. - Tìm trên ( ) P điểm C sao cho tam giác ABC có diện tích nhỏ nhất. Lời giải: + Gọi 2 ( ; ) ( ) 4 c C c P BA ĐƯỜNG CÔNIC 686 Dang Thanh Nam Auditing 51a, National economics University, Ha Noi, Viet Nam a) Ta có 2 ( 6;8), ( ; 4) 4 c AB AC c         , tam giác ABC vuông tại A khi và chỉ khi 2 8 16 8 . 0 6. 8( 4) 0 (16;8); ( ; ) 8 4 9 3 3 c c AB AC c C C c            b) Phương trình đường thẳng : 4 3 12 0 AB x y , diện tích tam giác ABC nhỏ nhất khi khoảng cách từ C đến AB nhỏ nhất 2 2 4. 3 12 4 1 3 39 39 ( ; ) ( ) 5 5 2 4 20 c c d C AB c Dấu bằng xảy ra khi và chỉ khi 3 9 3 ( ; ) 2 16 2 c C C. BÀI TẬP ĐỀ NGHỊ Bài 1. Trong mặt phẳng tọa độ Oxy cho elip 2 2 1 2 ( ) : 1, ; 8 4 x y E F F lần lượt là các tiêu điểm trái và phải của ( ) E . Tìm điểm M thuôc ( ) E sao cho 1 2 2 MF MF . Bài 2. Trong mặt phẳng tọa độ Oxy , lập phương trình chính tắc của elip ( ) E có độ dài trục lớn bằng 4 2 , các đỉnh trên trục nhỏ và các tiêu điểm cùng nằm trên 1 đường tròn. Bài 3. Trong mặt phẳng tọa độ với hệ đề các vuông góc Oxy , cho điểm (3;0) A và elip 2 2 ( ) : 1 9 3 x y E . Xác định tọa độ điểm , B C thuộc ( ) E sao cho tam giác ABC đều. Bài 4. Cho elip 2 2 ( ) : 1 25 4 x y E và đường thẳng ( ) : 2 15 10 0 d x y . Chứng minh rằng đường thẳng ( ) d cắt ( ) E tại 2 điểm phân biệt , A B . Xác định tọa độ điểm C thuộc ( ) E sao cho tam giác ABC cân. Bài 5. Trong mặt phẳng tọa độ Oxy cho elip 2 2 ( ) : 1 4 1 x y E . Hai điểm A và B di động trên( ) E sao cho OA OB  . Chứng minh rằng đường thẳng AB luôn tiếp xúc với 1 đường tròn cố định. Bài 6. Trong mặt phẳng tọa độ Oxy cho elip 2 2 ( ) : 1 9 4 x y E .Viết phương trình đường thẳng đi qua (1 ;1) M và cắt ( ) E tại 2 điểm phân biệt A và B sao cho a) MA MB b) 2 AB BA ĐƯỜNG CÔNIC 687 Dang Thanh Nam Auditing 51a, National economics University, Ha Noi, Viet Nam Bài 7. Trong mặt phẳng tọa độ Oxy cho elip 2 2 ( ) : 1 2 8 x y E . Điểm M và N di động trên ( ) E sao cho OM ON  . Xác định tọa độ điểm M và N , biết rằng điểm M có tổng 2 tọa độ nhỏ nhất. Bài 8. Trong mặt phẳng tọa độ Oxy cho elip 2 2 ( ) : 1 9 4 x y E . Xác định tọa độ điểm M thuộc ( ) E , biết rằng M nhìn 2 tiêu điểm dưới 1 góc a) 0 90 . b) 0 120 . Bài 9. Trong mặt phẳng tọa độ với hệ đề các vuông góc Oxy cho điểm (2; 3) A và elip 2 2 ( ) : 1 3 2 x y E . Gọi 1 2 ; F F là các tiêu điểm của ( ) E ( 1 F có hoành độ âm). M là giao điểm có tung độ dương của đường thẳng 1 AF với ( ) E , N là điểm đối xứng của 2 F qua M. Viết phương trình đường tròn ngoại tiếp tam giác 2 ANF . Bài 10. Trong mặt phẳng tọa độ Oxy cho elip 2 2 ( ) : 1 8 4 x y E và đường thẳng ( ): 2 2 0 d x y . a) Chứng minh rằng ( ) d cắt ( ) E tại 2 điểm phân biệt A và B. Tính độ dài đoạn thẳng AB. b) Tìm tọa độ điểm C trên ( ) E sao cho tam giác ABC có diện tích lớn nhất. Bài 11. Cho elip 2 2 ( ) : 1 4 1 x y E và điểm 2 2 ( ; ) 3 3 M nằm trong ( ) E . Đường thẳng d đi qua M và cắt ( ) E tại 1 2 , M M và thỏa mãn điều kiện 1 2 2 MM MM . Viết phương trình của đường thẳng d. Bài 12. Trong mặt phẳng tọa độ Oxy cho elip 2 2 ( ) : 1 16 9 x y E . Xét điểm M chuyển động trên tia Ox , N chuyển động trên tia Oy sao cho đường thẳng MN luôn tiếp xúc với ( ) E . Xác định tọa độ các điểm , M N sao cho MN có độ dài nhỏ nhất. Tính giá trị nhỏ nhất đó. Bài 13. Cho elip 2 2 ( ) : 1; 24 12 x y E ABCD là hình vuông có tất cả các cạnh đều tiếp xúc với ( ) E . Viết phương trình các cạnh của hình vuông đó. Bài 14. Cho elip 2 2 1 2 ( ) : 1; , 4 x E y F F là các tiêu điểm. Điểm M di động trên ( ) E . Phân giác của góc 1 2 F MF cắt 1 2 F F tại N, H là hình chiếu của N trên 1 MF . Chứng minh rằng độ dài MH không đổi. Bài 15. Cho elip 2 2 1 2 ( ) : 1; , 4 x E y F F là các tiêu điểm. Điểm M di động trên ( ) E . Chứng minh rằng tâm I của đường tròn nội tiếp tam giác 1 2 F MF chạy trên một elip. Viết phương trình elip đó. BA ĐƯỜNG CÔNIC 688 Dang Thanh Nam Auditing 51a, National economics University, Ha Noi, Viet Nam Bài 16. Cho elip 2 2 ( ) : 1 4 1 x y E , có 2 đỉnh trên trục hoành là 1 2 ( 2;0), (2;0) A A . Chứng minh rằng trực tâm tam giác 1 2 MA A chạy trên một elip. Viết phương trình chính tắc của elip đó. Bài 17. Cho elip 2 2 ( ) : 1 4 1 x y E ,hai điểm , A B chuyển động trên ( ) E sao cho góc 0 90 AOB . Gọi H là hình chiếu của O trên AB. Chứng minh rằng H nằm trên một đường tròn cố định. Viết phương trình đường tròn đó. Bài 18. Cho elip 2 2 ( ) : 1 9 4 x y E và các đường thẳng ( ): 0; d x my ( '): 0 d mx y (m là tham số). Gọi M, N là giao điểm của ( ) E và ( ) d . P,Q là giao điểm của ( ) E và ( ') d . Viết phương trình đường thẳng ( ),( ') d d , biết rằng tứ giác MPNQ có diện tích lớn nhất, nhỏ nhất. Bài 19. Trong mặt phẳng tọa độ Oxy cho elip 2 2 : 1 4 3 x y E có hai tiêu điểm 1 2 , F F ( 1 2 , F F lần lượt là tiêu điểm trái, tiêu điểm phải của E ). Tìm điểm M thuộc E sao cho 2 2 1 2 7 MF MF đạt giá trị nhỏ nhất. D. MỘT SỐ BÀI TOÁN VỀ HYPEBOL VÀ PARABOL Bài 1. Cho hypebol ( ) : 1 H xy và điểm 5 5 ( ; ) 2 2 A . Tìm điểm M thuộc ( ) H sao cho MA nhỏ nhất. Lời giải: + Giả sử 0 0 0 0 0 0 1 1 ( ; ) ( ) ( ; ). M x y H y M x x x + Ta có 2 2 2 2 0 0 0 2 0 0 0 5 1 5 1 1 25 ( ) ( ) 5( ) 2 2 2 MA x x x x x x 2 2 0 0 0 0 0 0 1 1 21 1 5 17 17 ( ) 5( ) ( ) 2 2 4 4 x x x x x x + Đẳng thức xảy ra khi và chỉ khi 0 0 0 0 1 5 1 2 2 2 x x x x  Vậy 1 (2; ) 2 M hoặc 1 ( ; 2) 2 M Bài 2. Cho parabol 2 ( ) : 4 P y x và đường thẳng ( ) : 4 3 12 0 d x y . Tìm trên ( ) P điểm M sao cho khoảng cách từ M đến ( ) P là nhỏ nhất. Tính khoảng cách đó. Bài 3. Cho parabol 2 ( ) : 4 P y x và đường thẳng ( ) : 0 d x y m cắt ( ) P tại 2 điểm phân biệt A và B. Viết Phương trình đường thẳng ( ) d , biết rằng OA OB  . Bài 4. Cho parabol 2 ( ) : 4 P y x và đường thẳng ( ) : 4 3 12 0 d x y . Tìm trên ( ) P điểm M và N, biết rằng khoảng cách từ M đến ( ) P là nhỏ nhất và OM ON  . BA ĐƯỜNG CÔNIC 689 Dang Thanh Nam Auditing 51a, National economics University, Ha Noi, Viet Nam Bài 5. Trong mặt phẳng tọa độ Oxy cho parabol 2 ( ) : P y x và điểm (0;2) I . Xác định tọa độ 2 điểm , ( ) M N P sao cho 4 IM IN        . Bài 6. Cho elip 2 2 2 2 ( ) : 1;( ) : 1 9 1 4 x x y E y H . Viết phương trình đường tròn đi qua các giao điểm của ( ),( ) E H . Bài 7. Cho hypebol 2 2 ( ) : 1 2 3 x y H và điểm (2;1) M . Viết phương trình đường thẳng qua M và cắt ( ) H tại 2 điểm A,B sao cho M là trung điểm của AB. Bài 8. Trong mặt phẳng tọa độ Oxy cho parabol 2 ( ) : 2 P y x và đường thẳng ( ) : 2 2 1 0 m d my x . Chứng minh rằng với mọi m ( ) m d luôn đi qua tiêu điểm F của ( ) P và cắt ( ) P tại 2 điểm phân biệt A, B. Tìm quỹ tích trung điểm I của AB khi m thay đổi. Bài 9. Cho tam giác ABC có ba đỉnh thuộc hypebol ( ) : 1 H xy . Chứng minh rằng trực tâm của tam giác ABC cũng thuộc ( ) H . Bài 10. Cho hypebol ( ) : 1 H xy và đường thẳng ( ) :5 3 1 0 d x y . Xác định tọa độ điểm M thuộc ( ) H sao cho khoảng cách từ M đến ( ) d nhỏ nhất. Bài 11. Cho hypebol ( ) : 1 H xy . Tìm các điểm A,B thuộc 2 nhánh của ( ) H sao cho độ dài AB nhỏ nhất. Bài 12. Cho đường tròn 2 2 ( ) : ( 2) 36 C x y và điểm (2;0) A . Tìm quỹ tích tâm đường tròn đi qua A và tiếp xúc với ( ) C . Bài 13. Trong mặt phẳng tọa độ Oxy cho parabol 2 : 4 P y x . Viết phương trình đường thẳng d đi qua tiêu điểm của P và cắt P tại hai điểm phân biệt , A B có 4 AB .