Sự tương giao của đồ thị hàm số
ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Hàm Số Và Ứng Dụng Đạo Hàm
Trang PAGE2/NUMPAGES3 - Mã đề thi 100
File Word liên hệ: 0937351107 Trang PAGE \* MERGEFORMAT 2
Trang PAGE1/NUMPAGES3 - Mã đề thi 100
SỰ TƯƠNG GIAO CỦA ĐỒ THỊ HÀM SỐ
1 - Tọa độ giao điểm của hai đồ thị hàm số:
Phương pháp:
Cho 2 hàm số có đồ thị lần lượt là (C) và (C’).
+) Lập phương trình hoành độ giao điểm của (C) và (C’):
+) Giải phương trình tìm x từ đó suy ra y và tọa độ giao điểm.
+) Số nghiệm của (*) là số giao điểm của (C) và (C’).
2 - Tương giao của đồ thị hàm bậc 3
Phương pháp 1: Bảng biến thiên (PP đồ thị)
+) Lập phương trình hoành độ giao điểm dạng (phương trình ẩn x tham số m)
+) Cô lập m đưa phương trình về dạng
+) Lập BBT cho hàm số .
+) Dựa và giả thiết và BBT từ đó suy ra m.
*) Dấu hiệu: Sử dụng PP bảng biến thiên khi m độc lập với x.
Phương pháp 2: Nhẩm nghiệm – tam thức bậc 2.
+) Lập phương trình hoành độ giao điểm
+) Nhẩm nghiệm: (Khử tham số). Giả sử là 1 nghiệm của phương trình.
+) Phân tích: (là là phương trình bậc 2 ẩn x tham số m ).
+) Dựa vào yêu cầu bài toán đi xử lý phương trình bậc 2 .
Phương pháp 3: Cực trị
*) Nhận dạng: Khi bài toán không cô lập được m và cũng không nhẩm được nghiệm.
*) Quy tắc:
+) Lập phương trình hoành độ giao điểm (1). Xét hàm số
+) Để (1) có đúng 1 nghiệm thì đồ thị cắt trục hoành tại đúng 1 điểm. (2TH)
- Hoặc hàm số luôn đơn điệu trên R hàm số không có cực trị hoặc vô nghiệm hoặc có nghiệm kép
- Hoặc hàm số có CĐ, CT và (hình vẽ)
+) Để (1) có đúng 3 nghiệm thì đồ thị cắt trục hoành tại 3 điểm phân biệt Hàm số có cực đại, cực tiểu và +) Để (1) có đúng 2 nghiệm thì đồ thị cắt trục hoành tại 2 điểm phân biệt Hàm số có cực đại, cực tiểu và
Bài toán: Tìm m để đồ thị hàm bậc 3 cắt trục hoành tại 3 điểm lập thành 1 cấp số cộng:
1. Định lí vi ét:
*) Cho bậc 2: Cho phương trình có 2 nghiệm thì ta có:
*) Cho bậc 3: Cho phương trình có 3 nghiệm thì ta có:
2.Tính chất của cấp số cộng:
+) Cho 3 số theo thứ tự đó lập thành 1 cấp số cộng thì:
3. Phương pháp giải toán:
+) Điều kiện cần: là 1 nghiệm của phương trình. Từ đó thay vào phương trình để tìm m.
+) Điều kiện đủ: Thay m tìm được vào phương trình và kiểm tra.
3 - Tương giao của hàm số phân thức
Phương pháp
Cho hàm số và đường thẳng . Phương trình hoành độ giao điểm của (C) và (d):
(phương trình bậc 2 ẩn x tham số m).
*) Các câu hỏi thường gặp:
1. Tìm m để d cắt (C) tại 2 điểm phân biệt có 2 nghiệm phân biệt khác .
2. Tìm m để d cắt (C) tại 2 điểm phân biệt cùng thuộc nhánh phải của (C) có 2 nghiệm phân biệt và thỏa mãn .
3. Tìm m để d cắt (C) tại 2 điểm phân biệt cùng thuộc nhánh trái của (C) có 2 nghiệm phân biệt và thỏa mãn .
4. Tìm m để d cắt (C) tại 2 điểm phân biệt thuộc 2 nhánh của (C) có 2 nghiệm phân biệt và thỏa mãn .
5. Tìm m để d cắt (C) tại 2 điểm phân biệt A và B thỏa mãn điều kiện hình học cho trước:
+) Đoạn thẳng
+) Tam giác vuông.
+) Tam giác ABC có diện tích
* Quy tắc:
+) Tìm điều kiện tồn tại A, B (1) có 2 nghiệm phân biệt.
+) Xác định tọa độ của A và B (chú ý Vi ét)
+) Dựa vào giả thiết xác lập phương trình ẩn m. Từ đó suy ra m.
*) Chú ý: Công thức khoảng cách:
+)
+)
4 - Tương giao của hàm số bậc 4
NGHIỆM CỦA PHƯƠNG TRÌNH BẬC 4 TRÙNG PHƯƠNG: (1)
1. Nhẩm nghiệm:
- Nhẩm nghiệm: Giả sử là một nghiệm của phương trình.
- Khi đó ta phân tích:
- Dựa vào giả thiết xử lý phương trình bậc 2
2. Ẩn phụ - tam thức bậc 2:
- Đặt . Phương trình: (2).
- Để (1) có đúng 1 nghiệm thì (2) có nghiệm thỏa mãn:
- Để (1) có đúng 2 nghiệm thì (2) có nghiệm thỏa mãn:
- Để (1) có đúng 3 nghiệm thì (2) có nghiệm thỏa mãn:
- Để (1) có đúng 4 nghiệm thì (2) có nghiệm thỏa mãn:
3. Bài toán: Tìm m để (C): cắt (Ox) tại 4 điểm có hoành độ lập thành cấp số cộng.
- Đặt . Phương trình: (2).
- Để (1) cắt (Ox) tại 4 điểm phân biệt thì (2) phải có 2 nghiệm dương thỏa mãn .
- Kết hợp vơi định lý vi – ét tìm được m.